Cari Blog Ini

Minggu, 30 Desember 2012

Kalkulus





Kalkulus


Contoh Soal :

\int_2^5 x^2\, dx.
Di sini, f(x) = x^2 dan kita dapat menggunakan F(x) = {x^3\over 3} sebagai antiturunan. Sehingga:
\int_2^5 x^2\, dx = F(5) - F(2) = {125 \over 3} - {8 \over 3} = {117 \over 3} = 39.
Atau lebih umumnya, misalkan kita perlu menghitung
{d \over dx} \int_0^x t^3\, dt.
Di sini, f(t) = t^3 dan kita dapat menggunakan F(t) = {t^4 \over 4} sebagai antiturunan. Sehingga:
{d \over dx} \int_0^x t^3\, dt = {d \over dx} F(x) - {d \over dx} F(0) = {d \over dx} {x^4 \over 4} = x^3.
Namun hasil ini akan lebih mudah didapatkan apabila menggunakan:
{d \over dx} \int_0^x t^3\, dt = f(x) {dx \over dx} - f(0) {d0 \over dx} = x^3.





Andaikan
F(x) = \int_{a}^{x} f(t) \,dt\,.
Misalkan terdapat dua bilangan x1 dan x1 + Δx pada [a, b]. Sehingga didapatkan
F(x_1) = \int_{a}^{x_1} f(t) \,dt
dan
F(x_1 + \Delta x) = \int_{a}^{x_1 + \Delta x} f(t) \,dt\,.
Pengurangan kedua persamaan di atas menghasilkan
F(x_1 + \Delta x) - F(x_1) = \int_{a}^{x_1 + \Delta x} f(t) \,dt - \int_{a}^{x_1} f(t) \,dt. \qquad (1)
Bisa ditunjukan bahwa
\int_{a}^{x_1} f(t) \,dt + \int_{x_1}^{x_1 + \Delta x} f(t) \,dt = \int_{a}^{x_1 + \Delta x} f(t) \,dt.
(Jumlah dari luas wilayah yang bersampingan sama dengan jumlah kedua wilayah yang digabungkan.)
Dengan memanipulasi persamaan ini, kita dapatkan
\int_{a}^{x_1 + \Delta x} f(t) \,dt - \int_{a}^{x_1} f(t) \,dt = \int_{x_1}^{x_1 + \Delta x} f(t) \,dt.
Substitusikan persamaan di atas ke (1), sehingga
F(x_1 + \Delta x) - F(x_1) = \int_{x_1}^{x_1 + \Delta x} f(t) \,dt. \qquad (2)
Menurut teorema nilai antara untuk pengintegralan, terdapat sebuah c pada [x1, x1 + Δx] sehingga
\int_{x_1}^{x_1 + \Delta x} f(t) \,dt = f(c) \Delta x \,.
Substitusikan persamaan di atas ke (2), kita dapatkan
F(x_1 + \Delta x) - F(x_1) = f(c) \Delta x \,.
Bagi kedua sisi dengan Δx, menghasilkan
\frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = f(c).
Perhatikan pula ekspresi pada sisi kiri persamaannya adalah hasil bagi beda Newton untuk F pada x1.
Dengan mengambil limit Δx → 0 pada kedua sisi persamaan:
\lim_{\Delta x \to 0} \frac{F(x_1 + \Delta x) - F(x_1)}{\Delta x} = \lim_{\Delta x \to 0} f(c).
Ekspresi pada sisi kiri persamaan adalah definisi turunan dari F pada x1.
F'(x_1) = \lim_{\Delta x \to 0} f(c). \qquad (3)
Untuk mencari limit lainnya, kita gunakan teorema apit. c ada pada interval [x1, x1 + Δx], sehingga x1cx1 + Δx.
Juga, \lim_{\Delta x \to 0} x_1 = x_1 dan \lim_{\Delta x \to 0} x_1 + \Delta x = x_1\,.
Sehingga menurut teori apit,
\lim_{\Delta x \to 0} c = x_1\,.
Substitusikan ke (3), kita dapatkan
F'(x_1) = \lim_{c \to x_1} f(c)\,.
Fungsi f kontinu pada c, sehingga limit dapat diambil di dalam fungsi. Oleh karena itu, kita dapatkan
F'(x_1) = f(x_1) \,.
yang menyelesaikan pembuktian


Misalnya f kontinu pada interval [a, b], dan F adalah antiturunan dari f. Dimulai dengan kuantitas
F(b) - F(a)\,.
Misalkan pula terdapat bilangan-bilangan
x1, ..., xn
sehingga
a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b\,.
Maka
F(b) - F(a) = F(x_n) - F(x_0) \,.
Sekarang kita tambahkan setiap F(xi) bersamaan dengan balikan aditif (inverse additive), sehingga kuantitas yang dihasilkan adalah sama:
\begin{matrix} F(b) - F(a) & = & F(x_n)\,+\,[-F(x_{n-1})\,+\,F(x_{n-1})]\,+\,\ldots\,+\,[-F(x_1) + F(x_1)]\,-\,F(x_0) \, \\
& = & [F(x_n)\,-\,F(x_{n-1})]\,+\,[F(x_{n-1})\,+\,\ldots\,-\,F(x_1)]\,+\,[F(x_1)\,-\,F(x_0)] \,. \end{matrix}
Kuantitas di atas dapat ditulis sebagai penjumalhan berikut:
F(b) - F(a) = \sum_{i=1}^n \,[F(x_i) - F(x_{i-1})]\,. \qquad (1)
Kemudan kita akan menggunakan teorema nilai purata. Dinyatakan dengan singkat,
Misalkan F kontinu pada interval tertutup [a, b] dan terdiferensialkan pada interval terbuka (a, b). Maka terdapat c pada (a, b) yang
F'(c) = \frac{F(b) - F(a)}{b - a}\,.
Sehingga
F'(c)(b - a) = F(b) - F(a). \,
Fungsi F terdiferensialkan pada interval [a, b]; sehingga ia juga terdiferensialkan dan kontinu pada setiap interval xi-1. Oleh karena itu, menurut teorema nilai purata,
F(x_i) - F(x_{i-1}) = F'(c_i)(x_i - x_{i-1}) \,.
Substitusikan persamaan di atas ke (1), kita dapatkan
F(b) - F(a) = \sum_{i=1}^n \,[F'(c_i)(x_i - x_{i-1})]\,.
Asumsi ini mengimplikasikan F'(c_i) = f(c_i). Juga, x_i - x_{i-1} dapat diekspresikan sebagai \Delta x dari partisi i.
F(b) - F(a) = \sum_{i=1}^n \,[f(c_i)(\Delta x_i)]\,. \qquad (2)

Deret yang konvergen dari penjumlahan Riemann. Angka pada kanan atas adalah luas dari persegi panjang abu-abu. Ia konvergen ke intergal fungsi tersebut.
Perhatikan bahwa kita sedang menjelaskan luas persegi panjang, dengan lebar kali tinggi, dan kita menggabungkan total semua luas persegi panjang tersebut. Setiap persegi panjang, dengan teorema nilai purata, merupakan pendekatan dari bagian kurva yang digambar. Juga perhatikan bahwa \Delta x_i tidak perlulah sama untuk setiap nilai i, atau dengan kata lain lebar persegi panjang dapat berbeda-beda. Apa yang perlu kita lakukan adalah mendekatkan kurva tersebut dengan n persegi panjang. Semakin kecil partisi ini dan semakin besar n, maka kita akan mendapatkan luas wilayah kurva yang semakin mendekati nilai sebenarnya.
Dengan mengambil limit ekspresi norma partisi mendekati nol, kita mendapatkan integral Riemann. Yakni, kita mengambil limit partisi yang terbesar mendekati nol dalam hal ukuran, sehingga partisi-partisi lainnya lebih kecil dan jumlah partisi mendekati tak terhingga.
Maka kita mengambil limit pada kedua sisi (2). Kita dapatkan
\lim_{\| \Delta \| \to 0} F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n \,[f(c_i)(\Delta x_i)]\,.
Baik F(b) maupuan F(a) tidak bergantung pada ||Δ||, sehingga limit pada bagian sisi kiri tetaplah F(b) - F(a).
F(b) - F(a) = \lim_{\| \Delta \| \to 0} \sum_{i=1}^n \,[f(c_i)(\Delta x_i)]\,.
Ekspresi pada sisi kanan persamaan merupakan definisi dari integral terhadap f dari a ke b. Sehingga kita dapatkan:
F(b) - F(a) = \int_{a}^{b} f(x)\,dx\,,
yang menyelesaikan pembuktian.

Tidak ada komentar:

Posting Komentar